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Objective

 Acoustic Emission (AE) due to released energy

• Non-destructive testing (NDT) 

• Locating and monitoring crack/ damage

• Crack characterization

 Applications:
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Ref: FSIMS Document Ref: http://www.sseb.org/downloads/Presentations/
Ref: http://http://www.twi-global.com

Nuclear spent fuel tank Aircraft fuselage
Gear teeth fatigue crack



Overview of Potential Approach
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da

Time rate of potential/energy

t

dE/dt

Elastic waves

Crack
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𝑎 = ℎ𝑎𝑙𝑓 𝑐𝑟𝑎𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ

da



Elastodynamic (Navier-Lame) Equations

 Navier-Lame equations in vector form

 The basic concepts and equations of elastodynamics have been 

explained by 

• Lamb (1917)

• Viktorov (1967)

• Graff (1991)

• Aki and Richards (2002)

• Achenbach (2003)

• Giurgiutiu (2014) etc.
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Formation Pressure and Shear Excitation Potentials

 If body force is present, then the Navier-Lame equation can be 

written as follow

 Helmholtz decomposition states that any vector can be resolved 

into two potentials
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Formation of scalar and 

vector excitation 

potentials
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Helmholtz decomposition 



Wave Equation for Potentials

 Inhomogeneous wave equation for potentials

 So for P+SV waves the relevant potentials are 

 Corresponding wave equations for potentials are

 Equations must be solved subject to zero-stress boundary conditions
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(pressure and shear)

P+SV waves

Unknown displacement 

potentials (pressure and shear)



Concentrated Potentials 

 The potentials due to force can be written as follow

 Wave equations for potentials become
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Plate of thickness 2d in which straight crested Lamb waves 

propagate in the x direction due to concentrated potential at 
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In-plane Strain Solution
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Thickness dependent differential equation

Total solution: 

(a) General solution for homogeneous equation 

(b) Particular solution due to source 

Symmetric and antisymmetric Lamb wave solution 
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Inverse Algorithm
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Forward problem Inverse problem

Ref: Haider and Giurgiutiu, 2018



Experiments
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Fabrication of Specimens

13

Test specimen

304 mm 

101 mm 

1 mm hole

Tensile Strength, Ultimate: 505 MPa

Tensile strength, Yield: 215 MPa

24”

12”

• 304 mm X 101 mm coupons are 

fabricated

• 1 mm hole is provided at the geometric 

center for crack initiation

1 mm thick 304-stainless steel plate 



Fatigue Crack Generation in Steel Specimen 
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• Fatigue loading is applied with a minimum load 

of 2.5 kN and maximum load of 25 kN at 4 Hz

• At this load range the crack was initiated after 

20000 cycles

• After 35,000 fatigue cycles we observed 6 mm 

crack

Fatigue test for crack 

generation

Fatigue crack



AE Measurement Experimental Setup
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• Loading: 1.8 kN- 18 kN

• Frequency: 0.5 Hz

• Fatigue loading was applied

• AE signals were collected using Mistras AE system

• Approximate crack growth during fatigue experiment 

from 6 mm to 10 mm (5000 cycles)

Test specimen mounted on 

MTS machine

Acoustic pre-

amplifier Mistras AE instrument

PWAS 1
Fatigue crack

(6 mm)

Test specimen

PWAS 2

PWAS 3

PWAS 4

PWAS 4

AE hits at PWAS 4

over 600 cycles



Results
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AE Signals Collected at PWAS 4
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Signal 1
Signal 2

Signal 3 Signal 4



STFT of AE Signals
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Signal 1 Signal 2

Signal 3 Signal 4
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Pressure Excitation Potential Source of AE Signals
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Signal 1 Signal 2

Signal 3 Signal 4

Rise time: 4.25 µs Rise time: 4.63 μs

Rise time: 4.87 µs Rise time: 4.26 µs



Summary and Conclusions

 The guided waves generated by an acoustic emission (AE) event 

were analyzed through a Helmholtz potential approach 

 The inhomogeneous elastodynamic Navier-Lame equation was 

expressed as a system of wave equations in terms of 

• Unknown scalar and vector potentials 

• Known scalar and vector excitation potentials

 An experiment was designed and performed to extract AE signals 

from a fatigue crack growth

 An inverse algorithm was developed to characterize the AE source 

during crack propagation

 The source characterization can provide information 

• About excitation potential from the fatigue crack

• About a qualitative as well as quantitative description of the crack propagation 

phenomenon
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