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Outline

B Motivation

B Helmholtz potential approach to the analysis of acoustic emission

(AE) guided wave

e Theoretical formulation

 Developing forward problem

B Developing inverse algorithm
B Experiments

B Summary, conclusions and future work
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Objective

B Acoustic Emission (AE) due to released energy
» Non-destructive testing (NDT)
» Locating and monitoring crack/ damaae

» Crack characterization e e || it st | "o
. _ =
B Applications: o @) — /\/\/\/ — ]

Nuclear spent fuel tank Aircraft fuselage _Gear teeth fatigue crack

|

Ref: http://www.sseb.org/downloads/Presentations/ Ref: FSIMS Document S — =
Ref: http //http //www twi-global.com
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Overview of Potential Approach

a = half crack length
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Elastodynamic (Navier-Lame) Equations

B Navier-Lame equations in vector form
Uu=u,l+u Jj+uk

(/1 + lu)ﬁ (6 . U’) + IUVZU = pﬁ: Lame constant 4, u
Density, p

B The basic concepts and equations of elastodynamics have been

explained by

« Lamb (1917)

* Viktorov (1967)

« Graff (1991)

 Aki and Richards (2002)

 Achenbach (2003)

 Giurgiutiu (2014) etc.
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Formation Pressure and Shear Excitation Potentials

Py Helmholtz decomposition

£ b1
i i 5 i
” Energy release » Excitation potentials
1\ .-"‘l
e

Formation of scalar and
vector excitation
potentials

B |f body force is present, then the Navier-Lame equation can be

written as follow f=fivfj+ik
— 5, ~ - u= U|+u1+uk
(ﬁ+ﬂ)V(V-u)+ﬂV U—I—pf = pu Lame constant A, i
Density, p

B Helmholtz decomposition states that any vector can be resolved
Into two potentials V.-H=0 H=H,J+H,J+HK
i=grad ®+curl H =V®+VxH

s f = grad A +curl B"=VA +VxB"
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Wave Equation for Potentials

B [nhomogeneous wave equation for potentials
CVD+A =D

- C2VPH,+B,=H,
C2VPH +B =H — | cVH, +B;=H,
c2V’H,+B, =H,

B So for P+SV waves the relevant potentials are

®,H, A B,
B Corresponding wave equations for potentials are

P+SV waves

Unknown displacement Excitation potentials
potentials (pressure and shear) (pressure and shear)

B Equations must be solved subject to zero-stress boundary conditions
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Concentrated Potentials

T |y-ra =0 Oyy|yiqg =0 Oy|ysq =0 [
/ A V¥ Source 10\53& on
o ~ hrfla T
2d X
O
Plate of thickness 2d in which straight crested Lamb waves
propagate in the x direction due to concentrated potential at
_ x=0;y=0 _
B The potentials due to force can be written as follow
_ o VD +A=0
A= AS(X)S(y - yp)e B, =B,5(x)5(y~Yo)e ™ ¢2VH, + B, = H,
B \Wave equations for potentials become
T O o= A0Sy Yo
x> oy’ cP
0°H, 0°H, a)_2 _ _
o T oy t cZ H,=-B,5(x)o(y—Y,)

$UNIVFR‘§[1Y
A SOUTHCAROLINA. LAMSS

aaaaaaaaaaaaaaaaaaaaaaaaaaa



In-plane Strain Solution

Wave equations for potentials in a plate

|

Fourier transform in x direction

Thickness dependent differential equation

Total solution:

(@) General solution for homogeneous equation

(b) Particular solution due to source

Symmetric and antisymmetric Lamb wave solution

 }

In-plane strain displacement is calculated

Lamb wave part
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c2V’H,+B, =H,

P+SV waves

CD”(e‘ Y)+1,®(&,y) =—A5(y - Y,)
H, (&, y)+nZH,(&,y) =-B,5(y - ¥,)

— : A .
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Inverse Algorithm

d

Forward problem

Lamb wave propagation

; issi Receiver AE
Acoustic emission $ according to structural transfer |:"> 4
from crack function transducer
Yeep) '
( E‘, ) ) — [\/\/\/ — ]2d
Distance, x,
Excitation Potentials:

Calculate: Amplitude of the source

A =240 BO="38 0

Time rate of excitation potential A"(7) and B (2)(£)

Integrate: Time profile of released energy A"(£) and B;(t)

U

r
Fourier transform of the signal
Alt) = A(@) : B(5) =B (@)

Y

Calculate source term Ps(cfs) and P,(£%)

Ry

Calculate structural transfer function

N 53 el N.(&YH
f();s )ei{_-:‘ ) and :4();1 ) er(_-:“*r:-}
D(&) D (&)

—

Product of structural transfer functions and source term

rorESY A EAY L
Ex(@)ZPg(’;s:ﬁl) .\s(fs) é,f(._fsr_.) +R’(§J:w):;:.§i’))e:@“x,)

D&%

U

Perform inverse Fourier transform
£(@) = &)

Ref: Haider and Giurgiutiu, 2018

di

>

Inverse problem

Acoustic emission
from crack

Lamb wave propagation
<‘E according to structural transfer <:
function

Receiver sensor

signal

MY —

Distance, x,

Perform Short time Fourier transforms (STFT)
Vo) = V(@)

U

Calculate structural transfer function

Nf@j) FE) -\":4(5::) o2&
D& DD

v

Deconvolution of structural transfer functions and source term

TETY .
RE.D)=T @) —;3((;)} )

P et o) =P (@) 1 e € i)
o 0 DLEY

U

Calculate source term P.(£ “yand P(£%

U

Calculate excitation source in frequency domain
A(0): B.(@)

U

Inverse Fournier transform of the excitation signal
A@) > A®): B() > B,()

v

Excitation Potentials:
Calculate: Excitation Potentials source

A'()=c,’4@): B,()=cB.0)
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Experiments
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Fabrication of Specimens

1 mm thick 304-stainless steel plate

101 mm

A
N

1 mm.hole 304 mm
12
< > Test specimen
24
Te_lr_1 S|Ie_IStrfngtht,hU\l;_| rrllg_tez: 155()?/'? P * 304 mm X 101 mm coupons are
ensile strength, Yield: a fabricated
* 1 mm hole is provided at the geometric

Az center for crack initiation
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Fatigue Crack Generation In Steel Specimen

« Fatigue loading is applied with a minimum load
of 2.5 kN and maximum load of 25 kN at 4 Hz

« At this load range the crack was initiated after
20000 cycles

 After 35,000 fatigue cycles we observed 6 mm
crack

Fatigue test for crack

145

1 eneration
| untuullnlfimllmiu o g
Fatigue crack
rg%urulvﬁks['ry o F LAMSS
iGN
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AE Measurement Experimental Setup

o
PWAS 2
—_ .

Fati k
PWAS 1 " Gy PWAS 4

Acoustic pre-

Test specimen mounted on amplifier Mistras AE instrument ®

PWAS 3
MTS machine

* Loading: 1.8 kN- 18 kN _

« Frequency: 0.5 Hz Test specimen

« Fatigue loading was applied

» AE signals were collected using Mistras AE system

« Approximate crack growth during fatigue experiment
from 6 mm to 10 mm (5000 cycles)

105 @ ®®
S ol PWAS 4
N ' AE hits at PWAS 4
£ over 600 cycles
%% T‘S(N)iﬁlilk s 1t v © 00 0 a0 1000 1200 LAMSS
Q%ROUNA Time. s T

dSmar S
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Results
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AE Signals Collected at PWAS 4

_ . Signal 2
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4
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0 50 100 150 200 @ — @ 0 50 100 150 200
Fatigue crack
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STFT of AE Signals

Signal 1 Signal 2
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2000 4 2000
N ¥ . 3
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Pressure Excitation Potential Source of AE Signals

Signal 1
1.2+
%'0.8- 1 T ' .
E Rise time: 4.25 us
06| :
3
€04}
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Z
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0 1 1 L
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Signal 3 145 )
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< - -
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Rise time: 4.63 s

101 mm

PWAS 2
(45 mm)

—— e

304 mm

Fatigue crack
(6mm) PWAS 4

(45mm) —» Distance from the hole

PWAS 3
(45 mm)

Rise time: 4.26 us
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Summary and Conclusions

B The guided waves generated by an acoustic emission (AE) event
were analyzed through a Helmholtz potential approach

B The inhomogeneous elastodynamic Navier-Lame equation was

expressed as a system of wave equations in terms of
« Unknown scalar and vector potentials

« Known scalar and vector excitation potentials
B An experiment was designed and performed to extract AE signals
from a fatigue crack growth

B An inverse algorithm was developed to characterize the AE source
during crack propagation

B The source characterization can provide information

 About excitation potential from the fatigue crack

 About a qualitative as well as quantitative description of the crack propagation
phenomenon
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